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Tensegrities and rotating rings of tetrahedra:
a symmetry viewpoint of structural mechanics

By S. D. Guest

Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK (sdg@eng.cam.ac.uk)

Symmetry is a common attribute of both natural and engineering structures. Despite
this, the application of symmetry arguments to some of the basic concepts of struc-
tural mechanics is still a novelty. This paper shows some of the insights into structural
mechanics that can be obtained through careful symmetry arguments, and will show
how these can provide a key to understanding the paradoxical behaviour of some
symmetric structures.

Keywords: symmetry; structural mechanics; mechanisms

1. Introduction

It is commonly understood that the key to structural rigidity is to build structures
that are triangulated, and structural engineers will understand this to be true for the
most basic structural simpli cation, that a structure is pin-jointed. In 1864, James
Clerk Maxwell published this idea as a simple rule that described the number of bars
a pin-jointed structure requires for rigidity. However, as Maxwell was aware, there are
a number of structures for which this simple Maxwell rule does not work (Maxwell
1864). In particular, some symmetric structures apparently have too few bars, and
yet are rigid, while other symmetric structures that apparently have enough bars are
not rigid. In retrospect, this is understandable: group theory, the basic mathematical
language used to understand symmetry, was not developed for another 30 years.

The two structures to which the title refers both have paradoxical properties.
Tensegrities, such as the structure shown in  gure 1, are rigid structures that often
appear to have too few constraints to enforce this rigidity. The ring of six tetrahedra
shown in  gure 2, by contrast, appears to have enough constraints to ensure that
it is rigid, and yet, in fact, it is a  nite mechanism, and can keep rotating through
itself inde nitely. In both of these cases, the symmetry of the structure proves to be
a key to understanding its paradoxical behaviour.

This paper is split into  ve sections. Section 2 describes some of the relevant
background in structural mechanics and symmetry, and also describes Maxwell’s
rule and how it can be de ned in a symmetry-extended form. Sections 3 and 4 then
describe the applications of this theory to a number of paradoxical structures: the
idealized structures to which the title refers; the timber octagon at Ely Cathedral,
and the crystal structure of quartz.
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230 S. D. Guest

Figure 1. An example of an underconstrained tensegrity structure. The outer net
of members are cables in tension. The inner bars are struts in compression.

Figure 2. A ring of six tetrahedra.

2. Background

(a) An introduction to structural mechanics

For simplicity, this paper will almost always make the simplest of structural assump-
tions, that the structures considered are pin-jointed, and are only loaded at their
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Figure 3. Two pin-jointed structures. (a) Statically indeterminate structure with one state of
self-stress (note that the two diagonal bars do not meet). (b) Kinematically indeterminate struc-
ture that allows one mechanism. p1 {p4 are used to represent external loads; if they were replaced
by d1 {d4 the same coordinate system could also be used for joint displacements. t1 {t5 are used
to represent internal bar tensions; if they were replaced by e1 {e5 the same coordinate system
could also be used for bar extensions.

joints. In this case, the internal state of the structure can be fully described by
the tension in each of the bars, and these tensions must be in equilibrium with
the external forces applied at the joints. It is usually assumed that these are lin-
ear relationships, and, hence, that there is an equilibrium matrix H describing the
relationship between vectors of the internal tensions t and the externally applied
forces p: H t = p.

Structures are referred to as statically determinate if there is a unique solution to
the equilibrium equations for any applied loading. If a structure is statically inde-
terminate, then the structure will admit di¬erent states of self-stress, where the
structure can be stressed against itself, with no external load applied.

Figure 3a shows a simple example of a statically indeterminate structure. If the two
diagonal members were shortened, e.g. by turnbuckles, they would go into tension,
and the outer bars into compression, even if no external loads were applied at the
joints.

As well as equilibrium relationships, structural mechanics is also concerned with
the geometry of any small deformation of the structure, known as the compatibility
between the extensions of the bars and the displacement of the joints. Again this is
usually assumed to be a linear relationship, with a compatibility matrix C describing
the relationship between the displacements of the joints d, and the extension of the
members e: Cd = e. A simple proof based on energy methods shows that C = H T;
there is a very close relationship between the statics (equilibrium) and kinematics
(deformations) of a structure.

Structures are referred to as kinematically determinate if there is a unique solution
to the compatibility equations for any set of internal extensions. If a structure is kine-
matically indeterminate, then there will be certain movements of the joints where,
at least to the  rst-order approximation made, there are no changes in bar lengths.
This is referred to as a mechanism. If the structure eventually tightens up as the
mechanism is displaced, i.e. the mechanism involves higher than  rst-order changes
in bar length, the mechanism is called in nitesimal. Otherwise the mechanism is
called  nite.
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Figure 4. Symmetry-adapted coordinate systems, denoted by a tilde.

Figure 3b is a simple example structure that allows a  nite motion. In mechanical
engineering terms, it is a planar four-bar linkage.

(b) An introduction to symmetry

A symmetric structure is one that is left unaltered by a symmetry operation. These
operations may be re®ections, rotations, translations or dilations, together with the
identity, which simply leaves everything untouched. All of the possible symmetry
operations for a structure together make a symmetry group. Although there is an
in nite variety of structures, the number of symmetry groups is strictly limited. One
great advantage of using symmetry in analysis is that, for each of the symmetry
groups, most of the hard work has already been completed by mathematicians, and
has been collected together in reference works such as Altmann & Herzig (1994).

The key to applying symmetry to structural mechanics is understanding how sym-
metry can be used to change the coordinate systems used for representing, for exam-
ple, applied loads or tensions, into a symmetry-adapted form. This is well understood
for the sort of simple bilateral symmetry of the structures shown in  gure 3. Both
external, and internal, coordinate systems can be split into what are commonly
termed symmetric components that are unchanged by the re®ection in the central
plane of symmetry, and antisymmetric components that are reversed by the symme-
try operations. Symmetry-adapted coordinate systems for the example structures in
 gure 3 are shown in  gure 4.

Mathematicians will recognize that the results shown in  gure 4 are the result
of splitting the reducible representations shown in  gure 3 into irreducible represen-
tations for the particular symmetry group of these structures. These structures are
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Symmetry and structural mechanics 233

Table 1. Irreducible representations of Cs

identity re° ection

A 0 (symmetry) 1 1

A 0 0 (antisymmetry) 1 1

unchanged by the identity and re®ection in a central plane; these operations together
are described as the symmetry group C s . The irreducible representations of C s are
shown in table 1, which will be found in more abstract form in, for example, Altmann
& Herzig (1994). This table essentially describes the familiar idea of `symmetry and
antisymmetry’. However, while it is not intuitive to see how symmetry and anti-
symmetry can be extended to more complicated symmetry groups, there are tables
corresponding to table 1 for all symmetry groups. Using these tables, calculating
symmetry-adapted coordinate systems that re®ect di¬erent aspects of the symmetry
becomes straightforward for all symmetry groups (Kangwai et al . 1999; Kangwai &
Guest 2000).

(c) Maxwell’s rule

In 1864 James Clerk Maxwell published an algebraic rule setting out a condition
for a pin-jointed frame composed of b rigid bars and j joints to be both statically and
kinematically determinate (Maxwell 1864). The number of bars needed to sti¬en a
three-dimensional frame free to translate and rotate in space as a rigid body is

b = 3j 6: (2.1 a)

The physical reasoning behind the rule is clear: each added bar links two joints and
removes at most one internal degree of freedom. The rule simply equates the number
of external and internal degrees of freedom, shown in, for example,  gure 3. It is
trivial to modify Maxwell’s rule for other simple cases: for a three-dimensional frame
 xed to supports,

b = 3j; (2.1 b)

for a two-dimensional frame free to translate and rotate in plane,

b = 2j 3; (2.1 c)

for a frame  xed to supports and con ned to a plane,

b = 2j: (2.1 d)

All four of these cases are covered by a formulation such as equation (2.2) with
appropriate values of t and :

b = tj : (2.2)

As Maxwell himself noted, equation (2.2) is a necessary but not, in general, a su¯ -
cient condition for establishing determinacy. A full account of the degrees of freedom
of the frame must allow for the possibility of states of self-stress and mechanisms,
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Figure 5. (a) A simple structure that satis¯es Maxwell’ s rule, and yet is statically and
kinematically indeterminate; (b) the state of self-stress; (c) the in¯nitesimal mechanism.

and so the full inventory of degrees of freedom of the frame can be written as an
extended Maxwell’s rule (Calladine 1978):

b tj + = s m; (2.3)

where s and m count the states of self-stress and mechanisms, respectively, and can
be determined by  nding the rank of the equilibrium matrix that describes the frame
in a full structural analysis (Pellegrino & Calladine 1986).

Maxwell’s rule, or the extended rule, can easily be applied to the structures shown
in  gure 3; equation (2.1 d) is the appropriate form. For  gure 3a, the structure has
j = 2 and b = 5. Thus there is one more bar than required, and there is a single
state of self-stress. Figure 3b has the same number of joints, j = 2, but two less bars,
b = 3. There is now one less bar than required, and, hence, a single mechanism.

Figure 5 shows a simple example of a structure that satis es Maxwell’s rule, with
j = 1 and b = 2, but is, in fact, both statically and kinematically indeterminate; an
examination of the equilibrium or compatibility matrix would show the matrix to be
rank de cient. There is a state of self-stress where both bars are in tension, and also
an in nitesimal mechanism, where, to a  rst-order approximation, the bars do not
change length as the central joint moves sideways. In fact, in nitesimal mechanisms
of this type can be classi ed into di¬erent categories (Connelly & Whiteley 1996),
and this example is known as pre-stress stable. If the tension in the bars is T > 0,
then some  rst-order sti¬ness is imposed on the mechanism. As we shall see later,
underconstrained tensegrity structures are also pre-stress stable, but, in these cases,
a single highly symmetric state of self-stress can sti¬en many di¬erent in nitesimal
mechanisms.

(d ) A symmetry extension of Maxwell’s rule

Fowler & Guest (2000) will shortly publish a symmetry extension of Maxwell’s rule.
It goes beyond the original rule by not only requiring that the number of internal
and external degrees of freedom are numerically equal, but also that they are equi-
symmetric. In its simplest form, the rule, written in the language of representations,
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Symmetry and structural mechanics 235

is

(b) (e) = (s) (m); (2.4)

where (b) is the representation of the symmetry of the bars, and (e) is the repre-
sentation of the symmetry of the external coordinate system; Fowler & Guest (2000)
show that these representations can easily be found for any given structure by count-
ing the bars and joints that remain unmoved by symmetry operations applied to the
structure. (s) and (m) are the representations of the states of self-stress, and the
mechanisms, respectively.

For the example structures in  gure 3, and examining the symmetry-adapted inter-
nal and external coordinate systems shown in  gure 4, the representations of the bars
and external coordinate systems can be written down. For both structures, the exter-
nal coordinate system has representation (e) = 2A0 + 2A00: two of the coordinates
of the symmetry-adapted coordinate system are symmetric, two are antisymmetric.

For  gure 4a, (b) = 3A0 +2A00: three of the coordinates of the internal symmetry-
adapted coordinate system are symmetric, and two are antisymmetric. Applying the
symmetry extension of Maxwell’s rule, this gives (s) = A0, showing that the state
of self-stress must be symmetric. Similarly, for  gure 4b, (b) = 2A0 + A00: two of
the coordinates of the symmetry-adapted internal coordinate system are symmetric,
and one is antisymmetric. Applying the symmetry extension of Maxwell’s rule, this
gives (m) = A00, showing that the mechanism must be antisymmetric.

For these structures, the symmetry-adapted Maxwell’s rule simply gives more
information about the symmetry of the state of self-stress or mechanism that has
already been detected by the original rule. Applying the symmetry-adapted rule to
 gure 5, however, allows the detection of the mechanism and state of self-stress. This
structure again has symmetry C s ; it is left unchanged by the identity and re®ection
in the vertical plane that passes along the bars. For this structure, (b) = 2A0

and (e) = A0 + A00, and, hence, (s) (m) = (b) (e) = A0 A00. Thus
(s) = A0, the structure has a symmetric state of self-stress (as shown in  gure 5b),

and (m) = A00, the structure has an antisymmetric mechanism (as shown in  g-
ure 5c).

An interesting point about the symmetry analysis of  gure 5 is that it is only valid
for the particular symmetric con guration shown. If the structure is displaced in the
direction of the in nitesimal mechanism, the symmetry is broken, and a Maxwell
analysis will no longer predict a mechanism. In fact, the mechanism no longer exists:
it was an in nitesimal mechanism that only existed for a  rst-order analysis in the
initial symmetric con guration.

3. Overconstrained mechanisms

There are a number of structures that satisfy Maxwell’s rule, and yet are kinemat-
ically indeterminate, and allow mechanisms;  gure 5 was a simple example. In this
case, the in nitesimal motion allowed by the structure is physically intuitive; what is
surprising, however, is that some structures that satisfy Maxwell’s rule in fact allow
¯nite motion. Symmetry can be the key to this motion (Kangwai & Guest 1999),
and three di¬erent examples will be examined.
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Figure 6. How to make a ring of six rotating tetrahedra. The ¯gure is colour coded to correspond
to ¯gure 7. The particular angles shown just allow the ring to pass through itself, as shown in
¯gure 7; ¯gure 2, by contrast, has tetrahedra made of isosceles triangles where the smallest angle
is less that 52 .

(a)
(b)

(c)

(d )

(e)

Figure 7. Finite motion of the ring of six rotating tetrahedra, showing one quarter of a complete
cycle: (a) D3h high-symmetry point; (b) generic C3v symmetry; (c) D3 d high-symmetry point;
(d) generic C3 v symmetry; (e) D3h high-symmetry point.
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Figure 8. The timber octagon at Ely Cathedral. c Crown copyright. NMR.

(a) Rings of rotating tetrahedra

Rings of rotating tetrahedra are well-known structures that show a surprising
continuous motion, where the tetrahedra continuously rotate through the centre of
the ring. It is easy to build a ring of tetrahedra from a single sheet of material, and
instructions for the example with six tetrahedra are given in  gure 6. Rings can be
made with any even number of tetrahedra greater that six, but we shall concentrate
on the case with six tetrahedra, because this is an example that, despite its continuous
motion, satis es Maxwell’s rule for determinacy. Consider the structure shown in
 gure 2 as made up of pin-jointed bars along the edges of the tetrahedra. This leaves
each tetrahedron rigid, but allows neighbouring tetrahedra to rotate relative to one
another about the common edge. Counting the bars and joints gives b = 30, j = 12.
The relevant form of Maxwell’s rule, b = 3j 6, is clearly satis ed.

The  nite motion of the six tetrahedra is shown in  gure 7. Excluding rigid-body
motions, the path followed is unique and any other motion would require deforma-
tion of the tetrahedra. Generically, as shown in  gure 7b; d, the structure has C3v

symmetry: it is left unchanged by the identity, rotation by 120 or 240 , or re®ec-
tion in three vertical planes of symmetry. The structure does, however, pass through
two types of high-symmetry point. In  gure 7a; e, the structure has an additional
horizontal plane of symmetry; this symmetry group is known as D3h . In  gure 7c,
the structure has three additional twofold rotation axes in the horizontal plane; this
symmetry group is known as D3d .

An analysis using the symmetry-extended form of Maxwell’s rule reveals the exis-
tence of a mechanism. Consider, initially, the ring in the position shown in  gure 7a,
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Figure 9. (a) A simpli¯ed view of the octagon. The main structural timbers run along the
edge of the triangles shown. (b) The structure displaced a small distance in the direction of its
mechanism.

where it has D3h symmetry. The table of irreducible representations for this sym-
metry group shows that it is possible to split the external and internal degrees of
freedom into six groups, each representing di¬erent aspects of the full symmetry of
the structure. Doing so reveals a mechanism with C3v symmetry, while the state of
self-stress has distinct, D3 symmetry: it is preserved by the threefold rotations about
the vertical axis, the two-fold rotation about three axes in the horizontal plane, but
not re®ection in the vertical planes.

At this point, this example appears little di¬erent from the structure in  gure 5;
the existence of a mechanism has been discovered, but mobilizing it destroys the
symmetry used and, hence, the validity of the analysis. In this case, however, sym-
metry is not entirely destroyed, and it is possible to re-analyse the structure using
the `lesser’ C3v symmetry of the mechanism. Doing this shows that the mechanism
does indeed have C3v symmetry, and this must be true not only at the initial point,
but also along the  nite path shown in  gure 7. The state of self-stress now only
has C3 symmetry (threefold rotation, but no re®ection) at most points along the
path|it is essentially a twist|and this self-stress cannot prevent the  nite motion.
Thus, although the structure passes through points of higher symmetry along the
path, it is the analysis using the essential C3v symmetry of the mechanism that is
the key to understanding the paradoxical behaviour.
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(a) (b)

Figure 10. The crystal structure of quartz shown as a framework of SiO4 tetrahedra. (a) The
high-temperature ( ) phase. (b) The low-temperature ( ) phase. The tetrahedra shown lie in
three planes parallel to the paper, the darkest tetrahedra in the lowest plane. The tetrahedra
are linked in spirals; complete circles at nodes denote tetrahedra that are linked, partial circles
are where tetrahedra are linked to planes above or below those shown. (b) White nodes have
moved up and black nodes down in the transition from (a).

(a) (b) 

Figure 11. Underconstrained tensegrities from Connelly & Back’ s (1998) catalogue: (a) has the
rotational symmetries of a cube and (b) has the rotational symmetries of an icosahedron. The
green members are struts in compression, the red and blue are cables in tension. Every member
of each colour can be superposed on every other by one of the operations of the symmetry group.
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(b) The timber octagon of Ely Cathedral

An interesting example of an overconstrained mechanism is the timber octagon at
Ely Cathedral, which is shown in  gure 8. The octagon stands above the crossing
of the cathedral and was built to replace a collapsed tower. The main structure
of the octagon was built around 1334, and has thus stood for two-thirds of the
millennium; and is twice as old as this journal, the Philosophical Transactions of the
Royal Society ! Despite this, Wade & Heyman (1985), in a careful examination of
the structure, described it as `an architectural masterpiece, but it was, in its original
form, something of a structural mistake’.

A simpli ed view of the main structure of the octagon is shown in  gure 9a. A count
of the bars and joints gives b = 24 and j = 8, and the structure satis es the relevant
form of Maxwell’s rule (equation (2.1 b)). However, the structure actually allows the
 nite mechanism shown in  gure 9b (Tarnai 1988). Re-analysing the structure using
the symmetry extension of Maxwell’s rule shows that this is indeed the case. There
is a  nite mechanism with the full C4v symmetry of the structure (a fourfold axis
of rotation, and four vertical planes of re®ection), while the state of self-stress has
lesser C4 symmetry, without the planes of re®ection.

The existence of this mechanism raises the question of how the structure has
stood for so long, as it could not support any load with a component parallel to the
mechanism. It is probable that the octagon initially adjusted its shape to ensure that
the weight distribution would not excite the mechanism. Since then, frequent repairs,
and the addition of large amounts of bracing, have ensured that it will survive into
the next millennium.

(c) Phase transitions in quartz

A  nal example of an overconstrained mechanism can be found in the crystal
structure of quartz. Quartz can be considered to be composed of rigid SiO4 tetrahedra
that are linked by corner-sharing oxygen atoms in an in nite framework. Two phases
of quartz are shown using this model in  gure 10 (Giddy et al . 1993).

A simple Maxwell count of the internal and external degrees of freedom of this
structure shows that it should be statically and kinematically determinate. However,
again because of the symmetry, this is not the case and a mechanism allows the
transition between the two phases shown in  gure 10 (Dove 1997).

4. Tensegrity structures

Underconstrained tensegrity structures are, in some ways, the opposite of the over-
constrained mechanisms described in the previous structure. According to Maxwell’s
rule, these structures do not have enough members for them to be rigid. However,
using the terminology of Connelly & Whiteley (1996), they are `prestress stable’, and
can be sti¬ened by a state of self-stress.

Tensegrity structures were  rst invented by Kenneth Snelson, and were popularized
by Buckminster Fuller (Marks 1960). `Tensegrity’ can be a rather vague term, but in
this paper it will be used to refer to underconstrained structures that can be made
rigid in a particular symmetric con guration by a state of self-stress. Examples of
these tensegrity structures are shown in  gures 1 and 11. One of the reasons for
the popularity of tensegrity structures is that when prestressed, any of the members

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Symmetry and structural mechanics 241

that are in tension may be replaced by a cable, which often allows the compression
members of the structure to be entirely separated from one another.

In general, tensegrity structures have many in nitesimal mechanisms. A Maxwell
bar and joint count shows the structure in  gure 1 to have at least six independent
mechanisms, the structure in  gure 11a to have at least 18 independent mechanisms,
and the structure in  gure 11b to have at least 54 independent mechanisms. In fact,
a full symmetry-based structural analysis shows that they each have a state of self-
stress with the full symmetry of the structure, and, hence, equation (2.3) implies
that each must have an additional mechanism beyond these numbers.

Comparing the tensegrity structures with the  nite mechanisms in x 3, the key
distinction is that the tensegrity structures have a state of self-stress with the full
symmetry of the structure. The  nite mechanisms could be mobilized because the
state of self-stress had some lesser symmetry than the mechanism. With tensegrity
structures, all the mechanisms must have the same or less symmetry than the state
of self-stress. All of the mechanisms are sti¬ened by the state of self-stress.

Connelly & Back (1998) have studied a mathematical idealization of tensegrity
structures that are made up of idealized struts and cables. The cables are members
that only provide tension, and have a rest length of zero, while the struts are members
that can only be in compression, and have an in nite rest length. Using the initial
assumption that there is a state of self-stress with particular symmetry properties,
and assuming that, for instance, there is only one type of strut, but two di¬erent types
of cable, Connelly & Back (1998) have produced a catalogue showing the di¬erent
tensegrities that are possible for each symmetry group. Figure 11 shows two of the
colour-coded structures from Connelly & Back’s (1998) catalogue;  gure 1 was also
taken from the catalogue.

5. Conclusions

One of the beauties of structural mechanics is that it simpli es seemingly intractable
problems to a stage where, for instance, engineers can sensibly and safely design
buildings. By putting structural mechanics in a group-theoretic context, this simpli-
 cation can be extended further for many complicated structural systems.

As well as providing the insights shown in this paper, it may be hoped that the
methods described will prove to be of further use in simplifying di¯ cult problems
in, for instance, complicated crystal or protein structures.

I thank R. D. Kangwai, S. Pellegrino, P. W. Fowler and R. Connelly for many helpful discussions
on symmetry and its application to structural analysis. I would also like to thank R. Connelly
and R. Back for preparing special versions of the tensegrity ¯gures from their catalogue.
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